usmerge

usmerge logo

Unsupervised Merge

PyPI version Python versions License Downloads GitHub last commit

A simple Python package for one-dimensional data clustering, implementing various clustering algorithms including traditional and novel approaches.

Installation

Install the package using pip:

pip install usmerge

Features

This package provides multiple one-dimensional clustering methods:

Usage

Data Format

The package accepts various input formats:

Basic Usage Examples

  1. Equal Width Binning:
    from usmerge import equal_wid_merge
    labels, edges = equal_wid_merge(data, n=3)
    
  2. Equal Frequency Binning:
    from usmerge import equal_fre_merge
    labels, edges = equal_fre_merge(data, n=3)
    
  3. K-means Clustering:
    from usmerge import kmeans_merge
    labels, edges = kmeans_merge(data, n=3, max_iter=100)
    

Advanced Usage

  1. SOM-K Clustering:
    from usmerge import som_k_merge
    labels, edges = som_k_merge(data, n=3, sigma=0.5, learning_rate=0.5, epochs=1000)
    
  2. Fuzzy C-Means:
    from usmerge import fcm_merge
    labels, edges = fcm_merge(data, n=3, m=2.0, max_iter=100, epsilon=1e-6)
    
  3. Kernel Density Based:
    from usmerge import kernel_density_merge
    labels, edges = kernel_density_merge(data, n=3, bandwidth=None)
    
  4. Jenks Natural Breaks:
    from usmerge import jenks_breaks_merge
    labels, edges = jenks_breaks_merge(data, n=3)
    
  5. Quantile-based Clustering:
    from usmerge import quantile_merge
    labels, edges = quantile_merge(data, n=3)
    
  6. DBSCAN Clustering:
    from usmerge import dbscan_1d_merge
    labels, edges = dbscan_1d_merge(data, n=3, min_samples=3)
    

Return Values

All clustering methods return two values:

Example Analysis

import numpy as np
import matplotlib.pyplot as plt
from usmerge import som_k_merge, fcm_merge, kmeans_merge, hierarchical_density_merge, dbscan_1d_merge

# Generate synthetic data with three clear clusters
np.random.seed(42)
data = np.concatenate([
    np.random.normal(0, 0.3, 50),    # First cluster
    np.random.normal(5, 0.4, 50),    # Second cluster
    np.random.normal(10, 0.3, 50)    # Third cluster
])

# Compare different clustering methods
methods = {
    'SOM-K': som_k_merge(data, n=3, sigma=0.5, learning_rate=0.5, epochs=1000),
    'FCM': fcm_merge(data, n=3, m=2.0, max_iter=100),
    'K-means': kmeans_merge(data, n=3),
    'DBSCAN': dbscan_1d_merge(data, n=3, min_samples=3),
    'Hierarchical Density': hierarchical_density_merge(data, n=3)
}

# Visualize results
plt.figure(figsize=(15, 5))
for i, (name, (labels, edges)) in enumerate(methods.items(), 1):
    plt.subplot(1, 5, i)
    plt.scatter(data, np.zeros_like(data), c=labels, cmap='viridis')
    plt.title(f'{name} Clustering')
    # Plot cluster boundaries
    for edge in edges:
        plt.axvline(x=edge, color='r', linestyle='--', alpha=0.5)
    plt.ylim(-0.5, 0.5)

plt.tight_layout()
plt.show()

Parameters Guide

Each clustering method has its own set of parameters:

Contributing

Feel free to contribute to this project by submitting issues or pull requests.

License

MIT License